Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Nutr Food Res ; : e2200804, 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2318245

ABSTRACT

SCOPE: The purpose of this study was to look into the antiviral activity of a plant extract derived from the roots of the Saussurea lappa as a food supplement against SARS-CoV-2 infection. METHODS AND RESULTS: Vero E6 cells are employed in the study to test the neutralizing effect of Saussurea lappa extract against the SARS-CoV-2 virus. For anti-viral activity detection, a sensitive real-time cell analyzer (xCELLigence RTCA) with a high repetition rate is used. A challenge experiment in mice is planned as a result of the in vitro analysis. A challenge test against SARS-CoV-2 is performed with 10 adult female K18-hACE2 transgenic mice in each group for this purpose. The mice in the S. lappa Group are gavaged 2 days before the virus is administered intranasally (i.n.). The control group received PBS instead of the extract. SARS-CoV-2 virus is administered i.n. under anesthesia for the first 3 days of the experiment, and S. lappa extract was administered by gavage in the afternoon. On the 10th day, mice in the S. lappa group survived the study, whereas animals in the control group grew ill and/or died. In this study, the extract protects the mice against the SARS-CoV-2 virus in 90% of the cases. CONCLUSIONS: This study demonstrates that the Saussurea plant has antiviral effects against SARS-CoV-2 in vitro and in animal models.

2.
Adv Sci (Weinh) ; 9(27): e2201294, 2022 09.
Article in English | MEDLINE | ID: covidwho-1958672

ABSTRACT

Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Animals , Antibodies, Monoclonal/therapeutic use , Mice , SARS-CoV-2
3.
Turk J Biol ; 44(3): 203-214, 2020.
Article in English | MEDLINE | ID: covidwho-618653

ABSTRACT

In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.

SELECTION OF CITATIONS
SEARCH DETAIL